Inactivation of Campylobacter jejuni by exposure to high-intensity 405-nm visible light.

نویسندگان

  • Lynne Elizabeth Murdoch
  • Michelle Maclean
  • Scott J MacGregor
  • John G Anderson
چکیده

Although considerable research has been carried out on a range of environmental factors that impact on the survival of Campylobacter jejuni, there is limited information on the effects of violet/blue light on this pathogen. This investigation was carried out to determine the effects of high-intensity 405-nm light on C. jejuni and to compare this with the effects on two other important Gram-negative enteric pathogens, Salmonella enteritidis and Escherichia coli O157:H7. High-intensity 405-nm light generated from an array of 405-nm light-emitting diodes was used to inactivate the test bacteria. The results demonstrated that while all three tested species were susceptible to 405-nm light inactivation, C. jejuni was by far the most sensitive organism, requiring a total dose of 18 J cm⁻² of 405-nm light to achieve a 5-log₁₀ reduction. This study has established that C. jejuni is particularly susceptible to violet/blue light at a wavelength of 405 nm. This finding, coupled with the safety-in-use advantages of this visible (non-ultraviolet wavelength) light, suggests that high-intensity 405-nm light may have applications for control of C. jejuni contamination levels in situations where this type of illumination can be effectively applied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bactericidal Effects of 405 nm Light Exposure Demonstrated by Inactivation of Escherichia, Salmonella, Shigella, Listeria, and Mycobacterium Species in Liquid Suspensions and on Exposed Surfaces

The bactericidal effect of 405 nm light was investigated on taxonomically diverse bacterial pathogens from the genera Salmonella, Shigella, Escherichia, Listeria, and Mycobacterium. High-intensity 405 nm light, generated from an array of 405-nm light-emitting diodes (LEDs), was used to inactivate bacteria in liquid suspension and on exposed surfaces. L. monocytogenes was most readily inactivate...

متن کامل

Exposure to Visible Light Emitted from Smartphones and Tablets Increases the Proliferation of Staphylococcus aureus: Can this be Linked to Acne?

Background: Due to rapid advances in modern technologies such as telecommunication technology, the world has witnessed an exponential growth in the use of digital handheld devices (e.g. smartphones and tablets). This drastic growth has resulted in increased global concerns about the safety of these devices. Smartphones, tablets, laptops, and other digital screens emit high levels of short-wav...

متن کامل

405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control.

BACKGROUND Although the germicidal properties of ultraviolet (UV) light have long been known, it is only comparatively recently that the antimicrobial properties of visible violet-blue 405 nm light have been discovered and used for environmental disinfection and infection control applications. AIM To review the antimicrobial properties of 405 nm light and to describe its application as an env...

متن کامل

Inactivation of Streptomyces phage ɸC31 by 405 nm light

Exposure to narrowband violet-blue light around 405 nm wavelength can induce lethal oxidative damage to bacteria and fungi, however effects on viruses are unknown. As photosensitive porphyrin molecules are involved in the microbicidal inactivation mechanism, and since porphyrins are absent in viruses, then any damaging effects of 405 nm light on viruses might appear unlikely. This study used th...

متن کامل

Enhanced inactivation of Escherichia coli and Listeria monocytogenes by exposure to 405 nm light under sub-lethal temperature, salt and acid stress conditions.

The antimicrobial effects of 405 nm light have generated interest in its use as an emerging disinfection technology with potential food-related applications. The aim of this study was to assess the bactericidal efficacy of 405 nm light for inactivation of Escherichia coli and Listeria monocytogenes under sub-lethally stressed environmental conditions. Bacteria were exposed to 405 nm light from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foodborne pathogens and disease

دوره 7 10  شماره 

صفحات  -

تاریخ انتشار 2010